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Abstract

This work is a review of recent results by the authors, presented by
the second-named author at the one day meeting held on 5 June 2004 at
the Department of Mathematics of the University of Ioannina in honour
of Professors Sfikas and Staikos. It is based on results published in (3]s [4]

1 Introduction

Until the 1960’s, electromagnetic research focused on vacuum, metals,
or dielectric media; sporadic attention to general electromagnetic me-
dia emerged rather slowly until the mid 1980°s. Since then, the scene
has dramatically altered: complex media electromagnetics is now a field
of intensive theoretical and experimental research, with a wide range of
technological applications. The integration of microwave circuits and com-
ponents on aircraft and space vehicles requires very high performances in
terms of speed and drag reduction: this is an important field of application
of complex media. Further, complex media have useful properties when
applied to microstrip waveguides and resonators, such as electronic fre-
quency shifting, radar cross-section reduction, bandwidth enhancement,
directivity improvement etc. Applications also arise in clinical medicine
(turbid chiral media with nonchiral particuiate inclusions are related with
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the concentration of blood glucose), planetary science (the atmosphere of
Titan - the biggest satellite of Saturn - is expected to be characterised by a
turbid chiral medium), physical chemistry (heterogeneous systems consti-
tuted of chiral particles in chiral fluids) and antennas industry (receiving
and transmitting antennas in various types of sheaths).

Complex media are birefringent substances that respond to either elec-
tric or magnetic excitation with both electric and magnetic polarization,
Such media have been known experimentally since the end of the 19th
century (e.g. study of chirality by Pasteur) and, as mentioned above, find
a wide range of applications from medicine to thin film technology. Un-
der the name of complex media one includes a wide variety of different
media such as chiral media, dispersive bianisotropic media etc. The un-
derstanding of the properties of such media, the differences from ordinary
dielectrics, and their possible applications requires detailed mathematical
modelling. The mathematical modelling of complex media is done through
the modification of the constitutive relations for normal dielectrics. While
for a normal dielectric the electric displacement D depends solely on the
electric field E, and the magnetic field B depends solely on the magnetic
induction H, in a chiral medium D and B depend on a combination of E
and H. In most cases of interest these constitutive laws are non-local re-
lations containing E and H. This is a common model for time-dispersive
complex media. Also these constitutive laws may be either linear or non-
linear relations of the fields, corresponding to the modelling of linear or
nonlinear complex media respectively.

Most of the mathematical work on complex media so far treats the
time-harmonic case. Work in the time-domain while very interesting both
from the mathematical point of view as well as from the point of view of
applications is still relatively new. It is the aim of this paper to collect
and review some recent results on the field, presented in [3], [4].

2 Linear bianisotropic dispersive media

This section is devoted to the mathematical modelling of an important and
quite general class of complex media: linear bianisotropic dispersive me-
dia. These principles governing such media are based both on theoretical
and experimental arguments. Qur final goal is to derive the constitutive
relations. that is to find the form of the operator C such that

d=Cu 1)

where d = (D, B)” and u = (E,B)”. In particular, we suppose that

(P1) The medium reacts linearly to electromagnetic excitations.

(P2) The medium is causal with respect to electromagnetic excitations,
that is if u(¢) = 0 for t € (—oo, 7] then d() = 0 for t € (—o0, 7] too.

(P3) The electromagnetic quantities of the medium remain invariant to
time translations, that is if to the electromagnetic field u(t) cor-
responds an electromagnetic displacement d(t), then to u-(t) =
u(t — 7), for arbitary = > 0, corresponds d.(t) = d{t—7).



(P4) The medium displays stability with respect to the excitations, in
the sense that to “small” perturbations on u correspond “small”
perturbation on d

Let us discuss these assumptions at some depth. First of all, in the light
of equation (1), we consider u as the excitation (cause) and d as the the
result. (P1) is stated under the condition that the excitation is relatively
small in amplitude, so a linear dependence between d and u can be as-
sumed. (P2), as already remarked, is a causality requirement: we cannot
know d before we start the observation of u. (P3) says that the medium
displays some sort of memory in the sense that the result d, at each time
instant o, depends on the past of the excitation u, that is on the values
u(t) for ¢ € (—oo, to].

In the sequel, we assume that u € L (H ). This means that the observa-
tion of u starts at ¢t = 0 and we are not concerned about the past t < 0.
Using (P1), (P2) and (P4) we have that C is a continous linear operator
on L (H). Taking into account and (P4), a form of (1), consistent with
these assumption is

d=Au+ K =xu

Here 4 and K are 6 x 6 matrices of the general block-form

_|& ¢ _ | za &
A"[C u] K_[Ca FdJ
Matrix A models the instantaneous response of the medium to the exci-
tations and is known in the literature as the optical response. The 3 x 3
matrices £, §, ¢ and p have entries that are real, measurable, bounded
functions of the spatial variable. There is a widely used classification of
media with respect to these entries. In particular, one calls the medium

(M1) homogeneous if €, £, ¢ and u are constant matrices,

(M2) anisotropic if £ = ( = 0 and isotropic if, furthermore, £ and y are
proportional to identity matrix,

(M3) bi-isotropic if all ¢, €, ¢ and g are all proportional to identity matrix
and

(M4) bianisotropic in the general case.

Matrix K models the memory (time-dispesive) phenomena and is know
as the susceptibility kernel. Its entries are real, sufficiently smooth, w-
exponentially bounded, causal functions of t. We also assume, for conve-
nience, that K(0) = 0.

So, by inspection, we saw that a form of operator C. consistent with the
assumptions (P1)-(P4), is

C=A+Kx (2)

We call (2) a linear dispersive law. Additional hypotheses can be made
about the medium in order to model particular situations such as dis-
sipation, reciprocity etc. These hypotheses lead to special forms of the
matrices A and K. In this paper we suppose that the matrix A is coercive;
this means that there exists a positive constant a so that for all » et

Ar-F>alr|? (3)



Eventually, (3) ensures that 4 is symmetric matrix and therefore

e=¢’  p=p7 g=(7
Furthermore, it is easy to see that A is invertible and A~ is also sym-
metric.

3 Solvability of the problem

We are now in position to proceed to solving the considered problem. For
convenience, we will treat the following version of the problem

%{Au-{-!{*u):Mu—(—f
(4)
u(0) =0

Thus we assume homogeneous initial condition. The measurable, causal
function f models the existent sources (currents) in the medium and
presents the initial data of the problem. It is trivial to see that every
problem with non-homogeneous initial condition uy € D(M) can be trans-
formed in the form (4). We will call this problem, Problem 1.

3.1 The optical response region

First we will assume the case where the dispersion phenomena are absent,
that is the case K = 0. Then, using the invertibility of matrix A, (4)
reduces to a usual Abstract Cauchy Problem

é‘;l = Mopu + o
a (5)
u{0)=0

where Mg = A7'M and f; = A7'f. In the space H we consider the
weighted inner product

(gl,gz)A=(Agl,gz)r—/ksflgz-ﬁdr

Equipped with that, H becomes a Hilbert space. Thanks to (3), this inner
product {-,-), is equivalent to the usual (-,-). It is well known that the
Maxwell operator M is skew-adjoint with respect to { -, ). Then, by using
the fact that A and A™! are Hermitian, one can easily deduce that oper-
ator Mp is also skew-adjoint with respect to {-, - ) 4- Using Stone’s The-
orem, My is thus the infinitesimal generator of a unitary Cp-semigroup,
say G.

Let us know examine the problem using the vector-valued Laplace trans-
form which is a generalization of the usual Laplace transform [1]. This
approach is of formal nature and was proposed in the classic work of
Hille and Yosida. Applying the Laplace transform to (5), we derive the
characteristic equation

(AZ — Mo)a(x) = fo(A) (6)



The fact that My is skew-adjoint ensures that, for A # 0, A is a regular
value of it, that is the resolvent R(A) = (AT — M)~ is well defined on
H and bounded. Indeed, the resolvent satisfies the inequality

1
IR | < 5 ™

After that, for each w > 0, the interval (w,00) contains regular values of
Mo and thus equation (6) can be written for A > w

i(A) = R(M)fo(A) (8)

The Hille-Yosida theorem states that a closed, densely defined operator
on a Hilbert space is the infinitesimal generator of a Co-semigroup if and
only if the resolvent is a member of the Widder class W, (B(H)). In this
case the resolvent is the Laplace transform of the semigroup. Thus (8)
takes the form o

a(n) = S(Nh()

and, after the inversion of the Laplace transform, we have
u(t) = (G *f)(t) (9)

So we have conclude to the explicit formula for the solution. Indeed. the
following result holds

Theorem 3.1 Let « > 0 and suppose f € LZT(H) is continous with
f(¢) € A[D(M)]. Then (5) admits a unique classical (i.e. continously
differentiable) solution u € LT (H), given by the formula (9). In addi-
tion, the problem is well posed.

3.2 The general case

We proceed now to the general problem (4). Applying the Laplace trans-
form, we take

AAG(A) + AR (A)a(A) = Ma(A) + F(A)
Again, multyplying from the left by 4~ and setting Ko = A~!K
(AT — Mo)a(A) = =AKo(A)a(N) + fo()
Thus we obtain the equation
G(A) = AR Ko(N)a(A) + R\ (A) (10)

This is the form of a fixed-point problem for an affine operator, dependent
on the parameter A. The linear part of this operator is

T(A) = -AR(A)Ko()) € B(H)

Taking into account that Ko belongs to the Widder class, and using (7),
we see that N
s 00 =0



This means that for sufficiently large A, say for A > wg > 0, we have
“ 7)) “ <1/2

namely T'()) is a contraction. By the Banach Fixed Point Theorem (10)
has, for these A’s, 2 unique solution @(A). This way a function i@ is defined
on the interval (wo, co) which eventually is continuous. We see that (10)
can be written in terms of semigroups

a(x) = G() (f‘o(A) = z(A)ﬁ)

We have set, for convenience, L = dKy/dt. Since T(\) = —G(AL(N) is
a contraction for A > wy, we know that 7 — T(A) is invertible and the
following estimate holds

J (I— T(,\)‘)-l “ < r__m <2 (11)
Thus we take that
a = (7-70) " ¢k (12)

Furthermore, we know that the sequence
() =00 (B() - LWana(h),  Go=0

converges to the value u(A). In other words, (i) converges pointwise to
U on (wp. o). From the above recursive formula, one easily computes

.0 = (T- 7)) - (= TO™) G0h(N) (13)

Theorem 3.2 Letw > wy and suppose that f & L (H) is continous with
f(t) € A[D(M)]. Then the fized-point problem, posed in space L (H)

u=Gx*(fo — L*u) (14)

has a unique solution u which is continously differentiable. This u is also
the (classical) solution of the problem (4) and this problem is well posed.
Finally. the following a priori estimate holds

2
lulyw S UENL .

Proof. 1. EXISTENCE: It is true that Gf € W, (H). Using this fact,
the estimate (11) and properties of the Laplace transform, we have from
(12). in one hand, that @@ € W.,(H) (this means that 1 is really a Laplace
transform) and from (13), on the other hand, that (@1,) is a Cauchy se-
quence in W_.(H). So it converges in norm and its limit is @. After that,
We may coniser equation (10) as an identity in W, (H). By inverting the
Laplace transform, we take equation (14). Since the Laplace transform is
an isometry (and thus a bicontinuous function), the sequence

Un =G = (fo = L*xun_y), u =0 (15)



converges in L3 (H) to a function u, the inverse of @1 with respect to the
Laplace transform. This u is a solution of (14). By induction and standard
semigroup theory one can show that u., is continuously differentiable and
that u.(¢) € D(M). Moreover, differentating the relation (14) we take
exactly (4).

II. UNIQUENESS: Suppose f = 0. Then, by (12), @ = 0 is the unique

solution of (10). The uniqueness follows from the injectivity of the Laplace .

transform.

II. STABILITY: Thanks to (12), the problem (10) is stable with respect
to f. Using the continuity of of the inverse Laplace transform, it is clear
that (14) is stable with respect to f.

IV. ESTIMATE FOR THE SOLUTION: It follows immediately from (12),
taking into account (3), (11) and the fact that the Laplace transform is
an isometry.

Remark. On the proof of the theorem 3.2 it is evident that U- is the
solution of the Abstract Cauchy Problem

d_;li = Moun + (fD — L= unkl)
¢ (16)
u(0)=0

This means that the iterative scheme (16) converges to the solution of
the original problem. This scheme can be further refined in order to be
used for a numerical treatment of the problem, which avoids inversions of
Laplace transforms.

4 The optical response approximation

In the previous section we treated the full nonlocal set of equations, mod-
elling dispersive bi-anisotropic media, as far as solvability is concerned.
Though the mathematical treatment of the full problem is feasible, in a
number of important applications (for example in wave propagation or
scattering problems) the full non-local problem may be cumbersome to
handle. Thus. local approximations to the full problem have been pro-
posed. that will keep the general features of complex media, without the
mathematical complications introduced by the non-locality of the model.
This section is devoted to the study of this problem in a special case,
the case of linear dispersive chiral media. The special symmetries of such
media facilitates the analysis.

In practice, a very common approximation scheme to the full consti-
tutive relations for the medium is used, where essentially the convolution
integrals are truncated to a Taylor series in the derivative of the fields.
Using this expansion of the convolution integrals and the Maxwell consti-
tutive relations we may obtain the so-called Drude-Born-Fedorov (DBF)
constitutive relations for chiral media

D = ¢(I + Beurl)E, B = p(I + Beurl)H



where 3 is the chirality measure, considered here as a parameter that will
be chosen so that a criterion for optimality be satisfied. This approx-
imation is usually called the optical response approrimation. For such
constitutive relations the equations for the fields become

curlE = _3% {p(I+ Bcu'rl)I:I}

s .8 .
curlH = { (I + Beurl)E} (17)
dwE =0, diwH =0
supplemented with the initial conditions
E(z,0) = Eo(z) H(z,0)=Ho(z)

and the boundary conditions corresponding to the perfect conductor prob-
lem. This problem will be called hereafter Problem II. Its solvability is
established in the following

Theorem 4.1 Assuming the coercivity of matriz A and that the source
terms have well defined Laplace transform, Problem II has a unique solu-
tion in D[N] for sufficiently small 3.

The solution to Problem 11 is a commonly used approximation to the
full solution of Problem I.

A very popular method of treating electromagnetic problems in the
frequency domain is through the use of Beltrami fields. Another interest-
ing approach to Problem II is through the use of Moses eigenfunctions [2].
These form a complete orthonormal basis for I,2 consisting of eigenfunc-
tions of the curl operator.

Specifically, Moses [2] introduced three dimensional complex vectors
K(z,p; A) with z,p € R® which satisfy,

curlK(z,p;A) = A|p| K(z,p;}) , A= 0, £1. (18)

That is, K(z,p; \) are eigenvectors of the curl operator and A |p| are the

associated eigenvalues. These fields (that will be called Beltrami-Moses

fields) satisfy some interesting orthogonality and completeness relations.
We may now define the fields

Qi(z.t) = {ExigH}(z,) , n=,/F (19)
which implies
E(z.t) = 3{Q+ + Q-}(=z.t) , H(z,t)= 77{Q+ — Q-}(z,1). (20)

Using these fields we may proceed formally to rewrite Problem II in
the following form

curl Qs = ii\/ﬁgt——{(f + Beurl) Qs (z, )}
div Q4 (z, t) = 0.
The associated initial values are

Qx(z,0) = Eo(z) % inH, (z) (21)



Using these Beltrami-Moses fields as kernels for an integral transform
we may define a generalized Fourier transform for vector functions W(z, t),
the Beltrami-Moses transform, as follows:

9.3 = [ R piie i
The inverse transform is given by the. formula

vt =Y [ Kiap 0ite.t 3
A

Expanding the fields Q@+ in terms of the Moses eigenfunctions and
using the property that both these fields have to be divergence free we may
reduce Problem II to a set of first order ordinary differential equations for
the field amplitudes corresponding to A = =1. The electromagnetic fields
may be obtained by inversion of the integral transform. This approach is
related to the spectral approach to Problem II.

9 The error of the optical response ap-
proximation

Recall that (E.H), (E,H) are, respectively, the solutions of Problems I
and II. We introduce a third problem the solution of which will furnish
the error of the optical response approximation. So, let

wve=E-E, wyg=H-H.
After some elementary manipulations we find that the error of the optical

response approximation satisfies the equations

] 3 - -
curlwg = —5F {pwa TH1*wH +E*xwe + *H+.§*E—,u,6curlH}

curlwy = % {ew£+61 *WE + *xwy + € *E-,‘»(*I:I—eﬁcurli}}
curlE = —-éta- {,u(f + ﬁcurl)I:I}
curlH = % { T+ ,Bc:url)f}}
divwg =divwyg =divE =divH =0
supplemented with the initial conditions
we(z,0) =0, wr(z,0) = 0, E(z,0) = Eo(z), H(z.0) = Ho(z).

"This problem will be hereafter called Problem III. The solution of Problem
IIT will furnish the error of the optical response approximation for a given
solution (E,H). Observe that the equations for the approximate fields
are decoupled from the equations for the error.

A priori estimates are obtained on the solution of Problem III. This is
done by reducing the error equations to the form of a Volterra equation



of the second kind. By expanding the solution in Moses eigenfunctions we
may rewrite the original system for the error in the compact form

A;w:d%{Azw—b-Ag;*w-%-S}

w={ “mm Ja={ TR0,
a=( 0 ) 3 ),

S=( S1.a s —#1*_1';')«—'5*}?)"")\3#137]_?{3\
Sz,A - E1*E,\+C*HA—A,BEJ}JIE,\ ’

where

Now integrate once over time to rewrite the equation for the error in the
following form

w=¢kw-+g (22)
where
¢=A;"(A1 - 4s), g=—A7'S.
For the specific system we study here we have that

dz( ~Ei ———*"’!“) gz( LBy +$xHa— 6| p| By

€ € = -
—”—’:"E —-'-“-‘J-f"_:‘ %*H;-}-ﬁ*E,\—)\ﬁIp]HA

This matrix Volterra equation will be used to obtain o priori estimates
for the error of the optical response approximation in terms of the Moses
transformed fields. The following holds [3].

Theorem 5.1 Let
P(t) := (1= 2sup || ¢35 [|z,(0,9) " > 0.
.7

Then, the solution of (22) satisfies the Jollowing a priori error bound
SUP || wi ||z 0.< C(®)sup || g: |l2,c0.0) -

It is interesting to notice that an alternative method of obtaining a
priori bounds can be developed using the Gronwall inequality. Indeed, in
this manner we can readily obtain the follewing result.

Theorem 5.2 Suppose € > 0, #>0,8>0and ¢ >0 and that | o IS‘
min(£,(). Assuming that the functions ¢:; are bounded, we obtain

sup [ wi(t) +wa(t) |< sup l91(2) + g2(2) | .

10
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The above estimate provides us with a way to minimize the error of
the optical response approximation. One way to do this, is by minimizing
the upper bound sup; || g: ||z, (0,¢)- This amounts to choosing the value
of 3 so0 as to minimize the integrals

¢ 1/r

19 lacoo= 1 [ |22 BsSutiraip) B[l
0

t
| 92 Iz, 0.6y= [
0

A series of other results were obtained for each p using the expansion of
Problem III in Moses eigenfunctions. This approach allows us to find exact
forms for the Laplace transform of the error for specified wavenumbers.
Numerical techniques can thus be used for the inversion of the Laplace
transform and the retrieval of the time dependence of the error term.

An estimate of the error in the spatial variables rather than in terms
of the wavenumbers can be obtained in the following way. Adopting the
notation of Section 2, the equation for the error may written in the form

1fr
T

ﬂ*ﬁ,\-i--g-*ﬂ\—)\mpifh dt’
M H

o]
Lw = E(Aw-i—K*wﬁ-‘I’)
where @ is a source term which is related to the solutions of the optical

response equation H and E. Multiplying by w, integrating over space and
using the properties of the operator L we obtain

S

d
2 "
2dt(”w I15)+ < a—t(K*w),w>—:—<¢>,w>.

Under the assumption that the convolution kernel is such that
KlAw < %(K*w) < KzA‘w
we obtain
2wl K f[wP<l @l w |
dt =
from which by use of the Gronwall inequality we may obtain a priori

bounds for the error. Similar bounds may be obtained by slight modifi-
cation of the conditions on the kernels.
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